
Com S 336
Fall 2022

Homework 4

Please submit an archive on Blackboard including the files indicated at the beginning of
each problem. (The first three are quite short, but require you to read and edit the
lighting shader code.)

1. (Please turn in your modified version of Lighting3.js.)

Modify the shader for Lighting3 to use the Blinn-Phong reflection model. That is,
instead of using R dot V for the specular component, use N dot H, where H is the
"halfway" vector obtained by normalizing L + V. If you make the exponent about 4
times as large, the results should look about the same.

Rationale: Blinn came up with this as an optimization. It is not hard to show that, when the
vectors are aligned in the same plane, the angle between N and H is exactly half the angle between
R and V, so this works basically the same way as the Phong reflection model. You just have to
increase the exponent by a factor of about 4 to get the same visual effects. The idea was that if
both the light and the viewer are far away, then the angle between L and V is relatively constant.
That way, H could be calculated once and reused for many vertices, while the in the Phong model
the reflected vector R has to be calculated for every fragment.

2. (Please turn in your modified version of Lighting2c.html.)

Modify the fragment shader in Lighting2c.html to get a cartoon effect like that in the
screenshot below. That is, after the lighting calculation is done, instead of directly
assigning the resulting color to gl_FragColor, use it to find a "greyscale" intensity, (red +
green + blue) divided by 3. Then use that number to select one of four solid colors to
assign to gl_FragColor. (You can pick the colors and the cutoff values as you wish.)

3. (Please turn in your modified version of Lighting4.js.)

The file Lighting4.js is similar to Lighting3.js, except that a plane is also drawn below the
rotating model to look like a "floor". In addition, the light position is represented by an
instance of CS336Object, and you can move the light around with the key controls.
There is a yellow line that represents the object's forward direction (negative z-axis), but
this direction currently has no effect on the scene, since the only the light's position is
being used. Try it out. Just for shits and giggles there is also a "flat shadow" that is
rendered using a simple projection matrix; see lines 480-500 or so to see how this is
done. If you move the light object down with the w key (it is actually moving “forward”
along its own negative z axis) you’ll notice the shadow gets bigger.

Lighting4.html and Lighting4.js are in the lighting directory, they are dependent on the
working CS336Object.js and Camera.js that are in the hierarchy directory.

Your task is to make the point light into a spotlight whose direction is the negative z-axis
of the object described above. One simple way of defining a spotlight is with two
parameters (that you will need to define as uniform variables) in addition to the light
position:

• A direction, D, which is a unit vector representing the direction in which the center of the
light cone is pointing

• An exponent, s, similar to the “shininess” exponent in the ADS reflection model, that
determines how the light intensity decreases as points move further from the center of the
light cone

If L is the unit vector from a fragment’s position toward the spot position, then –L dot D
is the cosine of the angle between that vector and the direction of the spotlight. See
illustration on next page. The quantity

(max (–L dot D , 0))s

can then be used to modulate the light's contribution to the fragment’s color. "Modulate"
just means that you have some number between 0 and 1 that you are using to multiply
some existing value. In particular, you do all the ambient + diffuse + specular
calculations normally, and then apply this factor only at the end so that fragments
outside the light's cone are darker. The exponent s determines how tightly focused the
spot cone is. (Also remember that we calculate L in eye coordinates, so for the dot
product to make sense, the vector D had better be transformed into eye coordinates too!)

The existing keyboard controls can then be used to "aim" the light. Add two more
keyboard controls: use 'c' to increase the exponent and 'C' to decrease it, which should
make the cone more focused or less focused.

Here are some screenshots with the light in its initial position (pointing straight down).
In the left image, the spot exponent is 15; in the right image, the spot exponent is 50.

4. (Please turn in your modified version of homework4/HeightMap.js.)

One easy and useful way to create mathematically based models is to use a height map, in
which a function of two variables (typically x and z) is used to generate a 3rd value (e.g.
y). From an array of 3d coordinates (x, y, z) generated this way, we can create a
wireframe, a polygonal mesh, and normal vectors for rendering.

D	 -L	

-L	dot	D	=	cosine	of	this	angle	

The basic idea is something like this: first compute sample values from the function at
equally spaced points in the x-z plane. You can imagine these as a 2-d array. In the x-
direction we divide the interval [minX, maxX] into numPointsX equally spaced values,
and in the z-direction we divide the interval [minZ, maxZ] into numPointsZ equally
spaced values. In the illustration below, we are looking down the y-axis at the x-z plane,
and the parameters numPointsX and numPointsZ are both 5. The black numbers are the
rows and columns. The red numbers refer to the logical indices of the vertices; this is
visualized here as a 2d array, but in practice it would be an ordinary array of floats, in
which the three coordinates for the vertex with logical index a would be located at actual
indices 3a, 3a + 1, and 3a + 2. Note that the logical index of the vertex at row i, column
j is i * numPointsX + j. The diagonal lines indicate the way the vertices are grouped into
triangles.

 minX maxX

 minZ

 maxZ

You can see this in the sample code lighting/HeightMap.js, where the methods for
generation of vertices and wireframe indices already implemented. Your task is to
complete the implementation of the two methods for generation of indices for the
polygons, and generation of vertex normal vectors. There is a generous amount of
internal documentation in the code to get you started.

You can experiment with samples of the wireframes using HeightMapTest1.html, which
should work out of the box. Edit the top of HeightMapTest1.js to try out different
functions. For the "ripple" function you should see something like this, where the
fragment shader picks a color for each fragment based on its height (y-value) in world
space:

You can try out your implementation of the mesh indices using HeightMapTest1a, which
uses the same shader, but uses the mesh indices instead of wireframe indices, and uses
gl.TRIANGLES instead of gl.LINES:

You can try out your implementation of the normal vectors using HeightMapTest2.html.
Using the same “ripple” function for the height map, you would get the image below:

