Com S 336
 Notes for exam 2

This will be a 75 minute written test emphasizing what we've done since the first exam, up through texture mapping. Closed book, no notes or calculators.

For coding problems you can CS336Object where applicable. Assume we have functions drawSquare for rendering a 1×1 square centered at the origin, drawCube for rendering a 1×1 cube centered at the origin, and drawSphere for a sphere of radius 1 centered at the origin (using some globally defined camera and shader). For example, the code snippet below will render a sphere of radius 5 centered at $2,3,4$:

```
var obj = new CS3360bject(drawSphere);
obj.setPosition(2, 3, 4);
obj.setScale(5, 5, 5) ;
var worldMatrix = new THREE.Matrix4();
obj.render(worldMatrix);
```


Topics and sample questions

Indices

- Given an array of vertices, write code to generate an array of indices that will render a wireframe of the model with the call

```
gl.drawElements(gl.LINES, numIndices, gl.UNSIGNED_SHORT, 0).
```

Assume that the vertices are ordered so that the model could be rendered with a call to gl.drawArrays(gl.TRIANGLES, 0 , numVertices).

Normal vectors

- Does a normal vector always have to be perpendicular to an associated triangle? Briefly explain.
- Give an example in which the normal matrix is not equal to the view * model transformation

Lambert shading

- Why do we have to normalize L and N in our lighting calculation?
- Why does the shader code have to take the maximum of 0 and $(L \operatorname{dot} N)$?
- Why doesn't the diffuse lighting calculation need to use the direction of the view point?

Phong (ADS) lighting model

- Suppose at a given vertex, L points to the light and N is the normal vector and V points to the view point. Assume all three are normalized. Sketch a picture and label the relevant vectors and angles. Write down the three components of the lighting model as accurately as you can.
- What is the purpose of the exponent in the specular component? What changes if we make the exponent bigger?
- How does the Blinn-Phong model differ from the Phong model? Justify with a sketch that the angle between H and N is half the angle between R and V (when all vectors are in the same plane).

Gouraud and Phong shading

- Briefly explain the difference between Gouraud and Phong shading
- Explain the nature of the artifacts that occur using Gouraud shading with a specular component
- Why do we have to normalize after interpolating vectors? Give a concrete example showing that interpolating between two vectors of length 1 does not necessarily give you a vector of length 1 .
- We normally do lighting calculations in eye coordinates. What would be different/easier/harder if we wanted to do it in world coordinates?
- Starting with the vertex shader from Lighting2c.html, add a uniform variable representing the position of the camera, given in world coordinates. Then rewrite the shader so that the lighting calculation is done in world coordinates. Note: you can make the assumption that there is no nonuniform scaling, i.e., the given normal matrix (which you will no longer be able to use) is just view*model.

Hierarchy

- Suppose we have a 1 x 1 square whose position is represented as a three.js or CS336Object with the transformations:
scale: 2, 4, 1
translation: 0, 0, 0
rotation: 90 degrees counterclockwise
Then we add a child object with the transformations
scale 1, 1, 1
translation: 0, 5, 0
rotation: 90 degrees counterclockwise
Sketch what we are going to see when rendered, indicating dimensions.
- Set up a planet rotating in a circular orbit around a fixed point (the "sun"), while also rotating on its vertical axis 365 times per orbit, where its axis of rotation is tilted 23.4 degrees from the vertical. Add a moon that orbits the planet at some smaller rate and is 1/10 the size of the planet. (Use CS336 objects; don't worry about rendering the models, just make it clear what the transformations and hierarchical relationships are.)

Texture mapping

- Suppose you have the stripe texture shown below at left, and assume that for the polygons to the right, the given coordinates are the texture coordinates for those vertices.
a) What are the approximate texture coordinates of the interpolated point P? Show the location in the texture that will be sampled for a pixel at point P.
b) Sketch the appearance of the texture on both polygons.
$(1,1)$

$(0,0)$

$(1,1)$
$(0,0)$

(0,0)
- Describe the problem of "magnification" in texture mapping. What artifacts result from $i t$? What do we do to mitigate it?
- Describe the problem of "minification" in texture mapping. What artifacts result from it? What do we do to mitigate it?
- Why does WebGL require 2D textures to be square and to have a width and height that is a power of 2 ?
- Starting with the fragment shader from Lighting2c, suppose we have added a uniform variable textureUnit and a varying variable fTexCoord for an interpolated texture coordinate. Make the additional modifications that would be needed to do the following: sample from the texture, convert the color to a greyscale value by averaging the red, green, and blue components, and then use the resulting value to modulate the diffuse surface color.
- Suppose you have a fragment shader that samples from a texture and uses the sampled value for the surface color. The sampling parameters are set to REPEAT. Modify the shader to give the effect of shrinking the texture down by a factor of 4. (For example, if the texture image you have loaded is a $2 x 2$ checkerboard, after you modify the shader it gives the effect of having an $8 x 8$ checkerboard.)
- Starting with the fragment shader from Lighting2c, suppose we have added a varying variable fTexCoord for an interpolated texture coordinate, but there is no texture unit or actual texture image.) Write code in the fragment shader to simulate the effect of a $2 x 2$ checkerboard texture for the diffuse surface color.
- Given a simple vertex/fragment shader pair, modify them to sample from a cube map and use the sampled value as the surface color. (There are no texture coordinates.)
- Same, but assume you also have a uniform variable textureUnit in the fragment shader with the texture unit for a cube map. Modify the shaders to get the effect of reflecting the cube map on the surface of the model. You can assume you have model, view, and projection matrices in the vertex shader and that there is no nonuniform scaling of the model.

