Com S 336

Fall 2022

Review for exam 1

This will be a 75 minute written test covering everything we've done through September 29, not including lighting, and not including anything specifically about quaternions. Closed book, no notes or calculators. You can bring colored pipe cleaners if you wish.

Remember that the topics page provides a detailed review of what we've covered, with links to code examples: https://stevekautz.com/cs336f22/topics.html

Some ideas for review or exam questions are written in italics in the discussion below. The written homework 2 provides some good examples for math-type questions on transformations.

You may need to write short pieces of Javascript code or GLSL code. You do not have to memorize the details of specific OpenGL functions but you should be familiar with how to use them in loading data and rendering. (We will not worry about code to load and compile shaders). You'll need to be able to write shader code at roughly the level of detail of the examples we've done, and should be familiar with the basic GLSL types and operations (e.g. mat4, vec3, the dot and normalize functions, etc.) The table below, showing sample notation for matrices, will be provided on the exam:

Pseudocode	Javascript
$\mathrm{M}=$ Translate($\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$)	M = new THREE.Matrix4 ().makeTranslation(tx, ty, tz);
M = Scale(sx, sy, sz)	M = new THREE.Matrix4 ().makeScale (sx, sy, sz);
M = RotateX(degrees)	M = new THREE.Matrix4 () .makeRotationX(toRadians (degrees));
$\mathrm{M}=$ Rotate Y (degrees)	M = new THREE.Matrix4 () .makeRotationY(toRadians (degrees));
M $=$ RotateZ(degrees)	M = new THREE.Matrix4 ().makeRotationZ (toRadians(degrees));
$\mathrm{A}=\mathrm{AB}$	A.multiply (B) ;
$\mathrm{A}=\mathrm{BA}$	$A=\text { new THREE . Matrix4 () Copy (B) . multiply (A) ; }$ A.premultiply(B); // alternate form
$\mathrm{C}=\mathrm{AB}$	$\mathrm{C}=$ new THREE.Matrix4 ().copy (A) .multiply (B) ;
$\begin{aligned} & \mathrm{M}=\operatorname{Translate}(1,2,3) * \operatorname{Scale}(4,5, \\ & 6) \end{aligned}$	$\begin{aligned} M & =\text { new THREE.Matrix4().makeTranslation }(1,2,3) \\ & \text {.multiply (new THREE.Matrix } 4() \text {.makeScale }(4,5,6)) ; \end{aligned}$

General overview of references

Keep in mind that 100% of what we've covered has been applied in examples or homework, so you can always see it in action by studying the code! See the topics page for specific references for topics, and see the resources page for textbook links. Both the book by Gortler and the "Teal book" are available free online through the ISU library.

Topics and sample questions

The basic graphics pipeline:
(Model ->)
Vertex processing -> Primitive assembly -> Rasterization -> Fragment processing (-> framebuffer)

Role of shaders in the pipeline

- Could you write a vertex shader that uses three adjacent vertices, e.g., to calculate a vector that is perpendicular to a triangle? Explain briefly.
- Could you write a shader that changes the way clipping is done?

OpenGL buffers and vertex attributes, role of function vertexAttribPointer

- Explain what gl .bindBuffer does.
- Describe the process of loading data and connecting data to vertex attributes
- Could the same data be used by more than one shader without reloading the data on the GPU? Explain briefly.

Linear interpolation

- Suppose you need to scale and shift the range 200 to 400 into the range -5 to 5. Write a formula to do it.
- Create an affine transformation M such that given a coordinate vector $c=[\mathrm{x}, \mathrm{y}, 0,1]^{\mathrm{T}}$, $M c=\left[\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, 0,1\right]^{\mathrm{T}}$, where x^{\prime} is equal to x converted from Celsius to Fahrenheit and y^{\prime} is y converted from Fahrenheit to Celsius. (Write your answer as the product of a scale matrix followed by a translation matrix.)

Basic color representation as $\mathrm{r}, \mathrm{g}, \mathrm{b}, \mathrm{a}$

Clip coordinates, clipping volume, depth testing

- Why does clipping potentially create new polygons?
- Describe the z-buffer algorithm in pseudocode

Vertex attributes, "varying" variables

- What is the role of a variable declared as attribute?
- What is the role of a varying variable?

OpenGL primitives, indexed rendering

- Given a set of vertices, sketch what is rendered using glDrawArrays(GL_LINES, ...),
glDrawArrays(GL_TRIANGLE_FAN, ...), etc.
- Given a bunch of vertices, write down the indices that would be used to render it using glDrawElements(GL_TRIANGLES, ...), or b) as a wireframe using glDrawElements(GL_LINES, ...),

Linear transformations as matrices: given a transformation f , determine what f does to the basis vectors; then the matrix for f is $M=[f(e 1) f(e 2) f(e 3) \tilde{o}]$ (first three columns; since f is linear, the origin õ is not moved).

- Suppose e1 and e2 are basis vectors, and there is a linear transformation f that takes e1 to $\left[\begin{array}{llll}5 & 7 & 0 & 0\end{array}\right]^{T}$ and e2 to $\left[\begin{array}{lllll}-1 & -3 & 0 & 0\end{array}\right]^{T}$. What is $f\left(\left[\begin{array}{llll}2 & 3 & 0 & 0\end{array}\right]^{T}\right)$?

Using homogeneous coordinates to represent translations; an affine transformation is a linear transformation followed by a translation

- Given an affine matrix M:
$M=\left[\begin{array}{ccrc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 0 & 0 & 0 & 1\end{array}\right]$
write M as a product $T A$, where T is a translation and A is linear.
- From above, let $M^{\prime}=A T$. Write M^{\prime} as a product $T^{\prime} A^{\prime}$, where T^{\prime} is a translation and A ' Prove that the $4 d$ matrix for an affine transformation always has (0 001 l) in bottom row.

2 D rotation, translation, scaling

- Given a 2D triangle with vertices (0, 0) (that is, coordinate vector $\left.\left[0 \begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}\right),(2,0)$, and $(2,1)$, sketch the triangle after
a) translation by $(4,5)$ followed by rotation by 90 degrees
b) rotation by 90 degrees followed by translation by $(4,5)$
c) translation by $(4,5)$ followed by scaling by 2 in the y direction
(show the new coordinates in each case, e.g., on graph paper)
- For each of a, b, c above, write down the transformation matrix (in pseudocode, as a product of standard matrices)
- A 2D triangle with vertices (2, -3), (3, -3), (3, -5), is transformed to (2, 2), (2, 3), (6, 3).

Find a matrix for the transformation.

A frame is a set of basis vectors, plus an origin

Points vs vectors in homogeneous coords

Coordinate systems used in OpenGL that we have discussed so far: model, world, eye/camera, clip, NDC, window

- What coordinate system are the fragment coordinates in (e.g. the gl_FragCoord.xy variable accessible in the fragment shader)? What are the default ranges for the x, y, and z values?
- What is the difference between clip coordinates and NDC?

Standard matrices: Translate(), RotateX(), RotateY(), RotateZ(), Scale()

Euler angles

- Suppose we have performed a rotation of 45 degrees about the y axis and also a rotation of 30 degrees about the x axis. If the model's x-axis is still in the x-z plane, which rotation was done first? That is, did we multiply coordinates by Rotate $Y(45)$ * Rotate $X(30)$, or Rotate $X(30) *$ RotateY(45) ?
- Consider the transformation matrix RotateZ(90)*RotateX(90). Fill in the blanks in two different ways to get the same transformation:

Rotate___(90) * Rotate \qquad
Rotate___(90) * Rotate___(90)

Intrinsic vs. Extrinsic transformations

Inverting a product of standard transformations

- An affine transformation consists of scaling by (1, 2, 1), then a translation to (1, 2, 3). Write down a matrix for the inverse of this transformation. (You don't have to multiply out the result.)
- Suppose that the first three columns of M are othornormal:
$M=\left[\begin{array}{llll}a & d & g & x \\ b & e & h & y \\ c & f & i & z \\ 0 & 0 & 0 & 1\end{array}\right]$
Find the inverse of M.
Changing frames, $\mathrm{M} \mathrm{vs}^{-1}$, the pattern AMA^{-1}
- Suppose your new frame has origin $(5,10,0)$ and that its x-axis is given by the vector [0 $10]^{T}$ and its y-axis is given by $\left[\begin{array}{llll}-1 & 0 & 0\end{array}\right]^{T}$ (and z axis still $\left[\begin{array}{lll}0 & 1\end{array}\right]^{T}$.) (I.e. this can be pictured as taking place in a 2D plane)
a) Find the matrix A that transforms the original frame into the second one b) If a given point has coordinates $[1201]^{T}$ in the original frame, what are the coordinates of this point with respect to this new frame? Draw a picture to verify. c) Find the matrix M that gives you the new coordinates of any point with respect to the new frame, e.g. $\mathrm{M}[1,2,0,1]^{\mathrm{T}}$ would be the answer to (b)
- An object is centered at (2,3,4). What transformation will make the object 5 times as big without moving its center?
- Suppose some frame \mathcal{F}^{\prime} is obtained from the world frame by matrix A. What matrix will rotate an object 30 degrees ccw about the z-axis of frame \mathcal{F}^{\prime} ?
- Suppose an object is centered at (p1,p2,p3) and we want to rotate it through angle r about its z axis. Write down the necessary matrix in terms of the standard matrices (e.g. Translate(), etc.) (Don't multiply them out!)
- Suppose an object is centered at (p1, p2, p3) and we want to rotate it through angle r about a line through its center, where the line is directed at angle theta from the positive y-axis and angle phi from the positive x-axis, as in spherical coordinates. Write down the necessary matrix in terms of rotations about the coordinate axes by the standard matrices.

The view transformation

- Suppose your camera is directly facing towards a point p that is 10 units away. What are the coordinates of \boldsymbol{p} w.r.t. the camera frame?
- Suppose you are given coordinates for three orthonormal vectors $\boldsymbol{x}=\left[\begin{array}{lll}\mathrm{x} 1 \times 2 \times 3 & 0\end{array}\right]^{\mathrm{T}}, \boldsymbol{y}=$ $\left[\begin{array}{lll}\mathrm{y} 1 \mathrm{y} 2 \mathrm{y} 3 & 0\end{array}\right]^{\mathrm{T}}$ and $\boldsymbol{z}=\left[\begin{array}{lll}\mathrm{z} 1 \mathrm{z} 2 \mathrm{z} 3 & 0\end{array}\right]^{\mathrm{T}}$, plus a point $\boldsymbol{p}=\left[\begin{array}{lll}\mathrm{p} 1 \mathrm{p} 2 \mathrm{p} 3 & 1\end{array}\right]^{\mathrm{T}}$, that together describe a frame that you would like to use as your camera. Write down the view matrix.
- Write the pseudocode for the function LookAt(eye, at, up). Assume you have basic functions such as RotateX(), Translate(), etc., and have $\operatorname{dot}()$ and $\operatorname{cross}()$ operations. - Given elements of the view matrix V, write code to find the coordinates of the camera position. (Recall that the view matrix looks like $R^{-1} T^{-1}$ where the columns of R are the camera's basis vectors and T is the translation to the camera's position; also recall that R is orthonormal. This makes it relatively easy to recover T from the view matrix.)

Orthographic projections, view volume

- Describe what the three.js function makeOrthographic(left, right, top, bottom, near, far) does.
- Derive the first row of the matrix (in terms of the six function parameters)
- Why do we have to specify near and far clipping planes?

Perspective projection

- What would the six arguments to the makePerspective(...) function be in order to give you a perspective projection with a 30 degree field of view, aspect ratio 1.5, near plane 2 and far plane 100? Write the code in JavaScript

Roles of the model, view, and projection matrices

- How do these three matrices relate to some of the coordinate systems we have discussed (model, world, eye, clip, NDC, window)?

Coding examples - GLSL

- Given a sample of code such as our original GL_example1a.js, modify it so that each vertex of the square has a different color and those colors are interpolated when it is rendered
- Write a fragment shader that colors each pixel with a greyscale value obtained from the average of the red, green, and blue values of a varying variable called fColor.
- Write a complete shader program (vertex shader and fragment shader) that will darken pixels according to their depth in clip space. You'll need an attribute variable for the vertex position (assume the position is given directly in clip coordinates) and a uniform variable for the color. Points that are closest to the viewer (gl_FragCoord. $z=0$) should have the given color, and points farthest from the viewer should be 50\% of the given color.
- Write a complete shader program (vertex shader and fragment shader) similar to the above, but using the depth in eye/camera space. In this case assume there are uniform variables for model, view, and projection transformations. You'll need to define a varying variable for the eye space depth, and uniform variables for the camera's near and far clipping planes.

Coding examples - Javascript
a) An excerpt from the draw() function of a Javascript program is shown on the next page. It renders a model consisting of the unit cube as in the screenshot on the left, using the identity matrix as the model transformation (seen as the global variable modelmatrix). Make the modifications to the code so that it will instead render the scene on the right, where the bars of the " X " are 4 units long and one-half unit across.

For part (a), excerpt from Javascript draw() function called each frame. Assume that view and projection are global variables that we do not need to modify:

```
gl.clear(gl.COLOR BUFFER BIT | gl.DEPTH BIT);
gl.useProgram(shader);
var positionIndex = gl.getAttribLocation(shader, 'a_Position');
var colorIndex = gl.getAttribLocation(shader, 'a_Color');
gl.enableVertexAttribArray(positionIndex) ;
gl.enableVertexAttribArray(colorIndex);
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.vertexAttribPointer(positionIndex, 3, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);
gl.vertexAttribPointer(colorIndex, 4, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY BUFFER, null);
var transform = new THREE.Matrix4()
    .multiply (projection)
    .multiply(view)
    .multiply(model);
var transformLoc = gl.getUniformLocation(shader, "transform");
gl.uniformMatrix4fv(transformLoc, false, transform.elements);
gl.drawArrays(gl.TRIANGLES, 0, 36);
```

b) An excerpt from the draw() and main() functions of a Javascript program is shown on below. It renders an animation of a colored cube orbiting counterclockwise about the y axis, in the $x-z$ plane, in a circle of radius 100. Make the modifications needed so that the cube also spins on its own y-axis 365 times per full orbit.
c) Same initial setup as (b). Modify the code so that a second cube, one-tenth the size of the first one, orbits clockwise around the first one in a radius of 20, and at three times the speed of the first one's orbit. (Neither cube should spin on its own axis.)

For parts (b) and (c), excerpt from main()

```
var degrees = 0;
var increment = 2;
// assume 'modelMatrix' is a global variable
modelMatrix = new THREE.Matrix4();
var animate = function() {
    draw();
    degrees += increment;
    // orbit of radius }100\mathrm{ in the x-z plane
    var x = 100 * Math.cos(degrees * Math.PI / 180);
    var z = 100 * Math.sin(degrees * Math.PI / 180);
    modelMatrix.makeTranslation(x, 0, z);
    requestAnimationFrame(animate, canvas);
};
animate();
```

For parts (b) and (c), excerpt from Javascript draw() function called each frame (assume 'projection' and 'view' are global variables)

```
var transform = new THREE.Matrix4()
    .multiply(projection)
    .multiply(view)
    .multiply(modelMatrix);
var transformLoc = gl.getUniformLocation(shader, "transform");
gl.uniformMatrix4fv(transformLoc, false, transform.elements);
gl.drawArrays(gl.TRIANGLES, 0, 36);
```

