
Com S 336
Fall 2020

Homework 1

Here are a few exercises to try out some of the fundamentals we've looked at so far:

• get comfortable with JavaScript
• carefully read the sample code and know what each line of code is doing
• understand interpolation

None of them is very long in terms of lines of code (e.g. a few dozen lines at most), but
you are certain to get stuck somewhere, so start early and talk to me or Jie as needed!

Please submit ONE zip archive on Canvas, containing the files indicated at the beginning
of each problem. When working from an existing example, do not unnecessarily
reformat or otherwise modify the code that does not need to be changed (so that we can
diff your submission against the original).

1. (Please turn in two new files named problem1.html and problem1.js.)

Modify GL_example1a_with_animation so that instead of shifting the figure from side to
side, it moves in a circle of radius 0.75 at a rate of one degree per frame. This is
straightforward, you'll just need another uniform variable for the y shift. To calculate the
position, use the sine and cosine functions as pictured below. Trig functions are available
in JavaScript as Math.cos(), Math.sin(), and of course you might also need Math.PI.
(Remember the JS trig functions expect radian measure! If you wish, you can use the
handy function toRadians in util/cs336util.js.)

Provide an html text box to adjust the size of the square with a scale factor for the square
(another uniform variable in the vertex shader). Tip: scale first, then shift the position.

The html code for a text box looks like:

Scale: <input id="scaleBox" type="text" value="1.0" size=4/>

where value is the default text and size is the width. To get the value, use the built-in
JS function parseFloat, e.g.,

 var scale = parseFloat(document.getElementById("scaleBox").value);

See the sample code examples/intro/text_box.html for an example using a text box
and attaching a handler.

2. (Please turn in two new files named problem2.html and problem2.js.)

Modify GL_Example1a to draw a regular N-gon instead of a square. It is not hard to
compute the coordinates in a loop using the sine and cosine functions as pictured below.
If you have not used JS arrays before, note you can append elements using the push()

method (like a Java ArrayList). Trig functions are available in JS as Math.cos(),
Math.sin(), and of course you might also need Math.PI. Scale the radius down to 0.8
so it's all visible. N should be selectable via an html text box.

You should load the new vertex data into the buffer only when a new value of N is
selected, not every frame. See the sample code examples/intro/text_box.html for an
example using a text box and attaching a handler.

Note: Remember that the argument to the constructor Float32Array or Uint16Array is a
JavaScript array, not a sequence of numbers. That is, we can write

 var myVertices = new Float32Array([1.0, 2.0, 3.0, 4.0]);

but NOT

 var myVertices = new Float32Array(1.0, 2.0, 3.0, 4.0);

3. (Please turn in your modified version of color_interpolator.js.)

Write a JS function that performs interpolation of colors associated with the corners of an
isosceles triangle (this simulates what is done by the fragment shader in GL_example2).

See the figure below. That is, given base and height of the triangle, colors for the three
corners, and an integer x and y offset within the triangle, find the interpolated values for
red, green, and blue at the given location. (Don't worry about alpha here, assume it's
always 1.0.) The exact signature for the function is in the file color_interpolator.js
along with a definition for a struct representing an RGBA color. You can find this file in
the examples/intro directory. For simplicity, you can assume that the base of the
triangle is always aligned with the bottom of the canvas. Turn in your completed version
of color_interpolator.js.

There are several ways you could do this. One is to use a Fahrenheit-to-Celsius conversion to find
interpolated values at points P' and Q' along the sides, and then do it again to interpolate between
P' and Q'. A slicker and more general solution would be to use barycentric coordinates, but this is
optional. If you are interested, check the text by Angel; or, a quick Google search will turn up lots
of references too, e.g. https://www.rose-hulman.edu/class/cs/csse351/m10/triangle_fill.pdf looks
good.

4. (Please turn in the two new files problem4.html and problem4.js.)

We have seen in GL_example1 how to use a uniform variable in a shader to shift a figure
to the left or right, and we have seen in GL_example2 how to use varying variables to

have colors associated with vertices interpolated across a triangle. Based on these
examples, create files problem4.js and problem4.html as follows:

a) Draw a colored triangle, similar to the figure above, shifted to the left side of the
canvas and draw a solid colored square shifted to the right side. You'll need a different
shader for each figure. The one on the left can use the shader from
GL_example2_varying_variablers and the one on the right can use the shader from
GL_example1a_with_uniform_color (you'll need to be able to set the color from your
JS code). (Obviously the shaders will need different ids in the html file.)

b) Add a mouse handler that, when the mouse is clicked on the left triangle, the handler
will use your function from problem 4 to calculate what color will be at that pixel, and
the application then draws the right-hand square that color. (A rudimentary color-
picker!) You can assume that the triangle coordinates and shift amount are fixed, but you
must allow for the fact that the canvas can be resized. That is, if the canvas is 400 x 400
pixels and the triangle's lower left corner is at (-0.5, -0.75), then (linear interpolation!)
that location has window (i.e. canvas) coordinates (100, 75). But if the canvas width is
600 with height 400 then the same point would have window coordinates (150, 75). In
your JS code you can always get the current size of the canvas from its attributes
canvas.width and canvas.height (where canvas is your JS variable referring to the
html canvas element).

See examples/intro/mouse.html for how to get the mouse coordinates. After you
get the mouse coordinates don't forget that the y-value is upside-down so you have to
subtract from the canvas height to flip it. (For the mouse, (0, 0) is the upper left corner of
the canvas, but for the function from problem 3, (0, 0) is the lower left corner, as it would
be in the framebuffer.)

