
Com S 227
Fall 2020

 Topics, review problems, and process for Exam 2
 Thursday, October 29, 8:15 pm

General information

The format of the exam is similar to Exam 1. It will again be conducted on Canvas using the
lockdown browser, and proctored via Zoom. Do the following immediately if you haven't
already:

1. Check Zoom: Make sure you have the Zoom app on your phone. Join a test meeting
using your phone at https://zoom.us/test and make sure the microphone and camera are
working. Make sure you know how to "raise your hand". You'll need to keep the
microphone un-muted during the exam, but you can turn down/off your speaker. (We'll
use the chat window to get your attention if we have to make an announcement.)

2. Check Location: Figure out where you're going to take the exam and how you will
prop up your phone so that you are visible. You will need to be in a private room, at a
desk or table that is clear except for your phone and computer and one piece of scratch
paper. It needs to be a quiet place, because you'll have your microphone on during the
exam. Make sure your phone is set up to use the local wifi.

3. Check Canvas: Try the "practice exam" on Canvas (under "Quizzes) to make sure you
can successfully use the Respondus lockdown browser.

However, based on feedback from Exam 1, we are making the following changes:

• Exam time limit will be 75 minutes.
• Check-in and check-out process will be more streamlined:

o Once everyone is in the zoom room, we will ask you all to simultaneously provide
a panorama of your room and desktop1 - after that, we'll give out the exam
password.

o You'll show your ID at the end of the exam, before leaving the zoom room.
Important: If you leave the meeting without showing your ID, we will not grade
your exam.

If you cannot run the lockdown browser or if you cannot participate in the zoom meeting
with your smartphone, please contact your instructor asap to make an alternative
arrangement.

1 If you uncomfortable about other people seeing your room, please send a private chat to the TA in your zoom
meeting, and we can anonymously move you to a breakout room for that portion of the check-in.

Summary of Exam topics

The exam covers everything done in lectures roughly through Monday, October 26 and in labs
through lab 9. The exam will concentrate on topics covered since the first exam. Most
problems will require loops, arrays, lists, or recursion. However, since the subject matter is
cumulative, knowledge of everything from the first exam is assumed. If you had any trouble with
Exam 1 you may also want to refer to the review sheet for that exam. The list below is an
overview of the main topics. You will not be tested on JUnit or the Eclipse debugger. The
exam does not cover sorting. We expect that about 15% of the exam will be on recursion.

• Loops
• Arrays
• Two-dimensional arrays
• ArrayLists
• Array, list and string algorithms – counting, searching, inserting, deleting, etc.
• Wrapper classes
• Reading and writing text files
• Using Scanner to parse text
• Recursion

You do not have to memorize methods from the Java API. You should know
System.out.print and System.out.println . You should know how to use String,
Scanner, Math, Random, File, and ArrayList<E>. You should know how to read and write text
files and how to read input from System.in. For specific methods from these classes that are
likely to be needed, we’ll provide you with the minimal one-sentence descriptions from the API,
as seen at the end of this review sheet.

How to prepare

The most important thing you can do to prepare for an exam like this is to practice solving
problems and writing code. You should write your solutions first in an ordinary text editor
(since that is the format of the exam). Then check your work by copying what you’ve written
into Eclipse and testing it. We encourage you to post and discuss your sample solutions in
Piazza. Please remember that we will NOT grade you on formatting or indentation, so
don't waste too much time trying to format your code.

You will need to write quickly and accurately, and to recognize correctly written code without
the help of Eclipse. You will not be expected to write comments or documentation or define
symbolic constants for numbers. (However, including brief comments can sometimes help us
interpret what you were trying to do, in case you have errors.)

More practice

Remember that there are many, many more problems to practice on in the book. Another
entertaining way to practice writing Java code is the interactive site
http://codingbat.com/java. There are lots of problems involving arrays and strings and recursion.
(However, note that codingbat.com has no problems involving ArrayList or Scanner.)

Some practice problems

You are encouraged to post your sample solutions on Piazza for discussion.

1) Some loop and array examples. Write a static method for each that has all needed information
as parameters. (You don’t have to create an entire class.)

 a) Given an array of doubles, return the average.

b) Given a sentence, find and return the longest word.

c) Given a string, return the string with all spaces and non-alphabetic characters replaced
by the character ‘#’, e.g. “Hello, world!” becomes “Hello##world#” (You can use the
static method Character.isAlphabetic(char c) to determine whether a given
character is alphabetic.)

d) Interest is added to the balance of a savings account each month. Write a method that,
given an annual interest rate and an initial balance, determines how many months it takes
for the balance to double.

e) Given an ArrayList of Integers, determine whether they are in increasing order.

f) Given a string, return the index of the first vowel (or -1 if there are none).

g) Given a string, determine whether any letter appears two or more times.

h) Given an array of ints, reverse its contents (the method must modify the given array
and returns void).

i) Given an array of integers, determine whether the array is a permutation of the numbers
0 through n – 1, where n is the length of the array. (A permutation means that each
number appears exactly once.)

j) Given a number n, print out a reverse diagonal line of n stars:

 *
 *
 *
 *
*

k) Given a 2D array of doubles, return a 1D array whose ith entry is the average of the ith
column.

l) Given a 2D array of ints, find the column with the maximum sum.

m) Given positive integers w and h and an int[] array arr of length w * h, return a 2d
array with h rows and w columns that contains the numbers in arr, listed left-to-right and
top-to-bottom.

n) Given an integer n, return the smallest prime number that is larger than n. (A number
is prime if it is greater than 1 and has no divisors other than 1 and itself.)

o) Given an array of positive integers, "collapse" the array to remove duplicates, and fill
in the unused cells at the end with zeros. For example, given the array [5, 4, 5, 6, 4, 2],
after this method executes the array should be [5, 4, 6, 2, 0, 0]. The method modifies the
given array, and returns void.

p) Given an array of positive integers, return a new array containing the same numbers, in
the same order, but without duplicates. For example, given the array [5, 4, 5, 6, 4, 2], the
method returns [5, 4, 6, 2].

q) Given an instance of Random, generate a list of numbers between 0 and 99, inclusive,
stopping when the same number has appeared more than once. The method returns a list
of all the generated numbers. (The ArrayList contains() method might be useful.)

r) Given a string, return a new string with the words in the opposite order. (E.g. given
"He's dead, Jim", return "Jim dead, He's".)

s) Given an array of ints, swap the first half with the second half. The method modifies
the given array and returns void. If the length is odd, the middle element is not moved.
For example, if called on the array [10, 20, 30, 40, 50, 60, 70], after the method executes
the array would be [50, 60, 70, 40,10, 20, 30].

2) Write a program that will remove all the //-style comments from a Java file. Your program
should prompt the user to enter the name of the input file. The output file should have the same
name as the input file but should end with the extension “.out” instead of “.java”. The output file
should be the same as the input file except that all //-style comments are removed. (You can
assume that the sequence “//” does not occur inside any String literals within the program.)

3) Trace the execution of the call enigma(12,0) and show all output that is produced.

 public static void enigma (int x, int y) {
 while (x > 0){
 if (x % 2 == 0){
 y = y + 1;
 }
 else {
 x = x + 2;
 }
 x = x - y;
 System.out.println(x + ", " + y);
 }
 }

4) Write a static method getPassword that will read a user’s password from System.in. The user
has to enter the password twice. The method should iterate the following steps as many times as
necessary until the user successfully enters two values that match:

1. prompt the user and read the password
2. prompt the user and read the password again
3. check that the second entry matches the first

(The method has no parameters and should return the entered password as a String.)

5) Suppose that a file contains lines with a name and phone number having the format

 name, xxx-xxx-xxxx

Also suppose you have a class called Contact with the constructor and methods below:

public Contact(String givenName, String givenPhoneNumber)
public String getName()
public String getPhoneNumber() // returns phone number as String

Create a class ContactDirectory suitable for storing a list of Contacts. The
ContactDirectory should have the methods:
 // adds the given contact to the directory
 void addContact(Contact c)

 // add all contacts from a file of the above form
 void addFromFile(String filename) throws FileNotFoundException

// returns phone number for name, or null if name is not in the list
String lookUp(String name)

6. a) Given the method mystery below, determine the output printed by the call mystery(10).
(It might be helpful to sketch the call stack as you go.)

 public static void mystery(int x)
 {
 if (x == 1)
 {
 System.out.println("pooh");
 }
 else if (x % 2 == 0)
 {
 System.out.println(x); // (**)
 mystery(x / 2); // (*)
 }
 else
 {
 mystery(x - 1);
 }
 }
 b) Suppose we have a method mystery2 that is the same as mystery except that the lines
labeled (*) and (**) are switched. Trace the call mystery2(10).

c) What happens when you call mystery(-1) ? Explain.

7. a) A child named Beatrice is jumping along on a floor consisting of rectangular tiles. She can
jump one tile, two tiles, or three tiles at a time. Write a recursive method to determine the
number of different ways she can cross n tiles.

 b) The streets of Manhattan are laid out in a rectangular grid. You need to walk to a destination
that is r blocks to the south and c blocks to the east of your current location (where r and c are
both non-negative). Assume that you never walk west or north. Write a recursive method that
determines how many different routes can you take to your destination. (For example:
whenever r is zero or c is zero, there is only one possible route. If both are nonzero, you can
start out going one block east, or going one block south.)

 c) Write a method that, given a directory (as a File object), returns a list of names of the files
beneath it whose names end with ".java" (within it, within its subdirectories, and so on). It
might help to define a recursive helper method of the form

private void findJavaFiles(File file, ArrayList<String> results)

 Note that the class java.io.File includes the following methods:

String getName()– returns the name of this File
boolean isDirectory() – returns true if this File represents a directory
File[] listFiles() – returns an array of all items (files and directories) in this File; returns null if
this File is not a directory

Excerpts from the Java API documentation

Excerpt from documentation for java.lang.String
char charAt(int index)

Returns	the	char	at	the	specified	index.	
boolean equals(String anotherString)

Returns	true	if	this	string	is	the	same	as	the	given	string.
int indexOf(char ch)

Returns	the	index	within	this	string	of	the	first	occurrence	of	the	given	character,	or	
-1	if	the	character	does	not	occur	in	this	string.	

int indexOf(String str)
Returns	the	index	within	this	string	of	the	first	occurrence	of	the	given	substring,	or	
-1	if	the	given	substring	does	not	occur	in	this	string.	

int lastIndexOf(char ch)
Returns	the	index	within	this	string	of	the	last	occurrence	of	the	given	character,	or	
-1	if	the	character	does	not	occur	in	this	string.	

int length()
Returns	the	length	of	this	string	

String substring(int beginIndex)
Returns	a	substring	of	this	string	starting	at	beginIndex	

String substring(int beginIndex, int endIndex)
Returns	a	substring	consisting	of	characters	from	beginIndex	through	endIndex	-	1	

String[] split(String regex)
Splits	this	string	using	the	given	string	expression	as	the	delimiter.	

String trim()
Returns	a	copy	of	this	string	with	leading	and	trailing	whitespace	removed

Excerpt from documentation for java.util.Random
int nextInt(int n)

Returns	a	pseudorandom,	uniformly	distributed	int	value	between	0	(inclusive)	and	
the	specified	value	(exclusive),	drawn	from	this	random	number	generator’s	
sequence.

java.util.Random constructors
Random()
Creates	a	new	random	number	generator.	

Excerpt from documentation for java.lang.Integer
int parseInt(String s)

Parses	the	string	argument	as	an	integer.

Excerpt from documentation for java.util.ArrayList<E>
boolean add(E element)

Appends	the	specified	element	to	the	end	of	this	list.
boolean add(int index, E element)

Appends	the	specified	element	at	the	specified	position	in	this	list.
void clear()

Removes	all	of	the	elements	from	this	list.
boolean contains(E element)

Returns	true	if	this	list	contains	the	specified	element.	
E get(int index)

Returns	the	element	at	the	specified	position	in	this	list.	
E remove(int index)

Removes	the	element	at	the	specified	position	in	this	list	(elements	to	right	shift	
down)	

boolean remove(Object obj)
Removes	the	first	occurrence	of	the	specified	object,	returning	false	if	it	does	not	
occur

E set(int index, E element)
Replaces	the	element	at	the	given	position	in	this	list	with	the	specified	element.	

int size()
Returns	the	number	of	elements	in	this	list.	

java.io.File constructor
File(String filename)
Constructs	a	new	File	instance.	

Excerpt from documentation for java.util.Scanner
void close()

Closes	this	scanner	and	with	associated	input	stream,	if	any.	
boolean hasNext()

Returns	true	if	this	scanner	has	another	token	in	its	input.	
boolean hasNextDouble()

Returns	true	if	the	next	token	in	this	scanner's	input	can	be	interpreted	as	a	double	
value	

boolean hasNextInt()
Returns	true	if	the	next	token	in	this	scanner's	input	can	be	interpreted	as	an	int	
value.	

boolean hasNextLine()
Returns	true	if	there	is	another	line	in	the	input	of	this	scanner.	

String next()
Finds	and	returns	the	next	complete	token	from	this	scanner.	

double nextDouble()
Scans	the	next	token	of	the	input	as	a	double.	

int nextInt()
Scans	the	next	token	of	the	input	as	an	int.	

String nextLine()
Returns	all	input	up	to	the	next	line	break	and	advances	to	the	next	line.	

java.util.Scanner constructors
Scanner(File source)
Constructs	a	new	Scanner	that	provides	values	scanned	from	the	specified	file.	
Scanner(InputStream source)
Constructs	a	new	Scanner	that	provides	values	scanned	from	the	specified	input	stream,	such	as	System.in.
Scanner(String source)
Constructs	a	new	Scanner	that	provides	values	scanned	from	the	specified	String.	

