
Testing out of Com S 127

Com S 127 is the introductory programming course for students in Computer Science who have
little or no previous programming experience. If you have already taken a high school or
community college programming course, or if you have other prior experience, you should
consider taking the test-out for Com S 127 and starting with Com S 227.

The test-out will be offered in Python or in Java. If you are comfortable with coding but your
background is in C, C++, or Javascript, you might consider spending a couple of weeks learning
Python, which should be an easy transition.

The test is an online, closed-book, proctored exam that will test basic skills by having you write
actual, working code. Prior to the exam you'll have the opportunity to practice with the code
editor and development environment we are using for the exam, which is based on the zyLabs
tool from zyBooks. You'd take the exam itself using a "lockdown browser" (preventing access to
anything else on your computer or the internet) and the exam is proctored via a Zoom meeting, in
which you would participate using a separate smartphone or tablet so that the proctors can see
and hear you.

The exam will be graded by running your code against a set of test cases, AND reviewing the
code manually to ensure it makes sense.

The following sections provide detailed information about the test. There are two descriptions
with sample problems, one for the Python version and one for the Java version.

Specific test information (Python version) and sample problems

Basic skills covered by the test:

• Declaring and using local variables
• Basic input and output
• Integer division and modulus operations
• Calling functions or methods (e.g. library functions, or functions defined in a different

module, or methods of the string and list types)
• Defining functions according to a specification
• Conditional logic and Boolean operators
• For-loops
• While-loops

• Nested loops
• Strings, string operations
• Lists, list operations, creating lists

The test does NOT include:

• In-depth coverage of object-oriented programming beyond that required to use basic
language features and utilities. E.g., in Python you need to understand how to use objects
such as lists and strings, but you would not be expected to define your own classes.

• Programs requiring global data (file-scope or class-scope variables)
• Dictionaries or sets
• Reading/writing external files

Sample problems

1. Write a Python function count_vowels that, given a string, returns the number of vowels in
the string (a character is defined to be a vowel if it is one of 'a', 'e', 'i', 'o', or 'u' or the uppercase
equivalent). For example, given string "Aardvark", the function returns 3.

def count_vowels(s):
 # TODO

2. A Lucas sequence is a sequence of integers in which each number (except the first two) is the
sum of the previous two numbers in the list. The first two are arbitrary. Write a Python function
is_lucas_sequence that takes a list of integers and returns True if the list is a Lucas sequence,
and False otherwise. The function returns True for any sequence of two or fewer numbers. For
example: given the list [-7, 5, -2, 3, 1, 4, 5], the function should return True.

def is_lucas_sequence(my_list):
 # TODO

3. Donuts are $1 each or $10 for a dozen. Coffees are $1.50 each, but you get a free coffee for
each dozen donuts you buy. Write a Python function coffee_break that, given the desired
number of donuts and coffees, returns the (best) price. For example: for 33 donuts, the function
returns $29, since 32 is two dozen plus 9 single donuts. For 33 donuts and 4 coffees, the
function returns 31.50: since a dozen costs only $1 more than 9 singles, and that's less than the
cost of a coffee, you'd buy three dozen and pay 1.50 more for the fourth coffee.

def coffee_break(num_donuts, num_coffees);
 # TODO

4. Suppose you are given a module named foo that includes the coffee_break function above.
Write a user interface that obtains from the console the desired number of donuts and coffees,
and returns the price. A sample interaction should look like this, where the values in bold are
entered by the user:

 How many donuts? 33
 How many coffees? 4
 Your price is: 31.5

5. Suppose you are given a module named foo that includes a function is_purple(n). What it
does is: given any integer n, it returns True if the number is "purple" and False otherwise. We
don't know what a "purple" number is, but we don't care, since this function is given to us! Write
a Python function that, given an upper bound max, returns a list containing, in order, all the
purple numbers between 0 and max, exclusive.

def find_purple_numbers(max):
 # TODO

6. Consider the Python function:

def mystery(x, y):
 result = False
 if x > y:
 if y != 0:
 result = True
 if x == 0:
 result = True
 return result

Notice that the function includes three conditional ("if") statements. Rewrite the function so that
it produces exactly the same results, but does not include any conditional statements. (Partial
credit may be given if you do it with just one "if" statement.)

7. Write a Python function print_pattern that, given any positive number n, produces n lines
of output in the pattern illustrated below for the case n = 5:

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

def print_pattern(n):
 #TODO

Specific test information (Java version) and sample problems

Basic skills covered by the test:

• Declaring and using local variables
• Basic input and output; using Scanner for input
• Integer division and modulus operations
• Calling static or non-static methods (e.g. library methods, or those defined in a different

class, or methods of the String and Scanner classes)
• Define static methods according to a specification
• Conditional logic and Boolean operators
• For-loops
• While-loops
• Nested loops
• Strings, string operations
• Arrays, creating arrays

The test does NOT include:

• In-depth coverage of object-oriented programming beyond that required to use basic
language features and utilities. E.g., in Java you need to understand how to construct and
use instances of Scanner and arrays, but you would not be expected to define your own
classes.

• Programs requiring global data (static variables or instance variables)
• Maps, Sets, Lists
• Reading/writing external files

Sample problems

1. Write a static method countVowels that, given a string, returns the number of vowels in the
string (a character is defined to be a vowel if it is one of 'a', 'e', 'i', 'o', or 'u' or the uppercase
equivalent). For example, given string "Aardvark", the method returns 3.

class SomeClass {
 public static int countVowels(String s) {
 // TODO

2. A Lucas sequence is a sequence of integers in which each number (except the first two) is the
sum of the previous two numbers. The first two are arbitrary. Write a static method that takes
an array of integers and returns true if the array is a Lucas sequence, and false otherwise. The
method returns true for any array of two or fewer numbers. For example, given the array
[-7, 5, -2, 3, 1, 4, 5], the method should return true.

class SomeClass {
 public static boolean isLucasSequence(int[] arr) {
 // TODO

3. Donuts are $1 each or $10 for a dozen. Coffees are $1.50 each, but you get a free coffee for
each dozen donuts. Write a static method coffeeBreak that, given the desired number of donuts
and coffees, returns the (best) price. For example: for 33 donuts, the function returns $29, since
32 is two dozen plus 9 single donuts. For 33 donuts and 4 coffees, the function returns 31.50:
since a dozen costs only $1 more than 9 singles, and that's less than the cost of a coffee, you'd
buy three dozen and pay 1.50 more for the fourth coffee.

class SomeClass {
 public static double coffeeBreak(int numDonuts, int numCoffees) {
 // TODO

4. Suppose you are given a class named SomeClass, located in package somepackage, that
includes the coffeeBreak function as above. Write a user interface that obtains from the
console the desired number of donuts and coffees, and returns the price. A sample interaction
should look like this, where the values shown in bold represent responses typed by the user:

 How many donuts? 34
 How many coffees? 5
 Your price is: 30.0

5. Suppose you are given a class named Util, located in package somepackage that includes a
static method isPurple(int n). What it does is: given any integer n, it returns true if the
number is "purple" and false otherwise. We don't know what a "purple" number is, but we don't
care, since this method is given to us! Write a static method that, given an upper bound
howMany, returns an array containing, in order, the first howMany purple numbers. You can
assume that all purple numbers are positive.

class SomeClass {
 public static int[] findPurpleNumbers(int howMany) {
 // TODO

6. Consider the method:

 public static boolean mystery(int x, int y)
 {
 boolean result = false;
 if (x > y)
 {
 if (y != 0)
 {
 result = true;
 }
 }
 if (x == 0)
 {
 result = true;
 }
 return result;
 }

Notice that the method includes three conditional ("if") statements. Rewrite the function so that
it produces exactly the same results, but does not include any conditional statements. (Partial
credit may be given if you do it with just one.)

7. Write a static method printPattern that, given any positive number n, produces n lines of
output as shown below for the case n = 5:

5 4 3 2 1
4 3 2 1
3 2 1
2 1
1

class SomeClass {
 public static void printPattern(int n) {
 // TODO

